基本类型 包装器类型 boolean Boolean char Character int Integer byte Byte short Short long Long float Float double Double
Number是所有数字包装类的父类
自动装箱、自动拆箱(编译器行为)
自动装箱:可以将基础数据类型包装成对应的包装类
Integer i = 10000; // 编译器会改为new Integer(10000)
自动拆箱:可以将包装类转为对应的基础数据类型
int i = new Integer(1000);//编译器会修改为 int i = new Integer(1000).intValue();
自动拆箱时如果包装类是null,那么会抛出NPE
Integer.valueOf
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
public String substring(int beginIndex, int endIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(beginIndex);
}
if (endIndex > value.length) {
throw new StringIndexOutOfBoundsException(endIndex);
}
int subLen = endIndex - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(subLen);
}
return ((beginIndex == 0) && (endIndex == value.length)) ? this
: new String(value, beginIndex, subLen);
}
public String(char value[], int offset, int count) {
if (offset < 0) {
throw new StringIndexOutOfBoundsException(offset);
}
if (count <= 0) {
if (count < 0) {
throw new StringIndexOutOfBoundsException(count);
}
if (offset <= value.length) {
this.value = "".value;
return;
}
}
// Note: offset or count might be near -1>>>1.
if (offset > value.length - count) {
throw new StringIndexOutOfBoundsException(offset + count);
}
this.value = Arrays.copyOfRange(value, offset, offset+count);
}
public static final ThreadLocal<SimpleDateFormat> sdf = new ThreadLocal<SimpleDateFormat>() {
@Override
protected SimpleDateFormat initialValue() {
return new SimpleDateFormat("yyyy-MM-dd");
}
};
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
4)ThreadLocalMap 原理
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
// 因为用的是线性探测,所以往后找还是有可能能够找到目标Entry的。
return getEntryAfterMiss(key, i, e);
}
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal<?> k = e.get();
if (k == key)
return e;
if (k == null)
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
// 对于还没有被回收的情况,需要做一次rehash。
如果对应的ThreadLocal的ID对len取模出来的索引h不为当前位置i,
则从h向后线性探测到第一个空的slot,把当前的entry给挪过去。 int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; }
set(线性探测法解决hash冲突)
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
// 计算key的hash值
- int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
removed = true;
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
rehash
先全量清理,如果清理后现有元素个数超过负载,那么扩容
private void rehash() {
- // 进行一次全量清理
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();
}
全量清理
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
扩容,因为需要保证table的容量len为2的幂,所以扩容即扩大2倍
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}
remove
private void remove(ThreadLocal<?> key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
public Iterator<E> iterator() {
return new Itr();
}
ArrayList#Itr
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
ArrayList#listIterator
public ListIterator<E> listIterator() {
return new ListItr(0);
}
ArrayList#ListItr
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
for /增强for/ forEach
For-each loop Equivalent for loop for (type var : arr) { body-of-loop } for (int i = 0; i < arr.length; i++) { type var = arr[i]; body-of-loop } for (type var : coll) { body-of-loop } for (Iterator iter = coll.iterator(); iter.hasNext(); ) { type var = iter.next(); body-of-loop }
public class OuterClass {
private static class StaticInnerClass {
int id;
static int increment = 1;
}
}
//调用方式:
//外部类.内部类 instanceName = new 外部类.内部类();
interface AnonymousInner {
int add();
}
public class AnonymousOuter {
public AnonymousInner getAnonymousInner(){
int x = 100;
return new AnonymousInner() {
int y = 100;
@Override
public int add() {
return x + y;
}
};
}
}
public class Person implements Cloneable {
private int age;
private String name;
private Company company;
@Override
public Person clone() throws CloneNotSupportedException {
return (Person) super.clone();
}
}
public class Company implements Cloneable{
private String name;
@Override
public Company clone() throws CloneNotSupportedException {
return (Company) super.clone();
}
}
使用super(即Object)的clone方法只能进行浅拷贝。
如果希望实现深拷贝,需要修改实现,比如修改为:
@Override
public Person clone() throws CloneNotSupportedException {
Person person = (Person) super.clone();
person.setCompany(company.clone()); // 一个新的Company
return person;
}
假如说Company中还有持有其他对象的引用,那么Company中也要像Person这样做。
可以说:想要深拷贝一个子类,那么它的所有父类都必须可以实现深拷贝。
另一种实现对象深拷贝的方式是序列化。
@Override protected Object clone() { try { ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutputStream os = new ObjectOutputStream(baos); os.writeObject(this); os.close(); ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray()); ObjectInputStream in = new ObjectInputStream(bais); Object ret = in.readObject(); in.close(); return ret; }catch(Exception e) { e.printStackTrace(); } return null; }
public abstract class Buffer {
/**
* The characteristics of Spliterators that traverse and split elements
* maintained in Buffers.
*/
static final int SPLITERATOR_CHARACTERISTICS =
Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.ORDERED;
// Invariants: mark <= position <= limit <= capacity
private int mark = -1;
private int position = 0;
private int limit;
private int capacity;
// Used only by direct buffers
// NOTE: hoisted here for speed in JNI GetDirectBufferAddress
long address;
// Creates a new buffer with the given mark, position, limit, and capacity,
// after checking invariants.
//
Buffer(int mark, int pos, int lim, int cap) { // package-private
if (cap < 0)
throw new IllegalArgumentException("Negative capacity: " + cap);
this.capacity = cap;
limit(lim);
position(pos);
if (mark >= 0) {
if (mark > pos)
throw new IllegalArgumentException("mark > position: ("
+ mark + " > " + pos + ")");
this.mark = mark;
}
}
}
ByteBuffer有两种实现:HeapByteBuffer和DirectByteBuffer。
ByteBuffer#allocate
public static ByteBuffer allocate(int capacity) {
if (capacity < 0)
throw new IllegalArgumentException();
return new HeapByteBuffer(capacity, capacity);
}
ByteBuffer#allocateDirect
public static ByteBuffer allocateDirect(int capacity) {
return new DirectByteBuffer(capacity);
}
HeapByteBuffer(间接模式)
底层基于byte数组。
初始化
HeapByteBuffer(int cap, int lim) { // package-private
super(-1, 0, lim, cap, new byte[cap], 0);
}
调用的是ByteBuffer的初始化方法
ByteBuffer(int mark, int pos, int lim, int cap, // package-private
byte[] hb, int offset)
{
super(mark, pos, lim, cap);
this.hb = hb;
this.offset = offset;
}
ByteBuffer的独有成员变量:
final byte[] hb; // Non-null only for heap buffers final int offset; boolean isReadOnly; // Valid only for heap buffers
get
public byte get() {
return hb[ix(nextGetIndex())];
}
final int nextGetIndex() { // package-private
if (position >= limit)
throw new BufferUnderflowException();
return position++;
}
// retry while helping enqueue pending Reference objects // which includes executing pending Cleaner(s) which includes // Cleaner(s) that free direct buffer memory while (jlra.tryHandlePendingReference()) {
synchronized (lock) {
if (pending != null) {
r = pending;
// 'instanceof' might throw OutOfMemoryError sometimes
// so do this before un-linking 'r' from the 'pending' chain...
c = r instanceof Cleaner ? (Cleaner) r : null;
// unlink 'r' from 'pending' chain
pending = r.discovered;
r.discovered = null;
} else {
// The waiting on the lock may cause an OutOfMemoryError
// because it may try to allocate exception objects.
if (waitForNotify) {
lock.wait();
}
// retry if waited
return waitForNotify;
}
}
} catch (OutOfMemoryError x) {
// Give other threads CPU time so they hopefully drop some live references
// and GC reclaims some space.
// Also prevent CPU intensive spinning in case 'r instanceof Cleaner' above
// persistently throws OOME for some time...
Thread.yield();
// retry
return true;
} catch (InterruptedException x) {
// retry
return true;
}
// Fast path for cleaners if (c != null) {
c.clean();
return true;
}
ReferenceQueue<? super Object> q = r.queue; if (q != ReferenceQueue.NULL) q.enqueue(r); return true; }
/**
* Opens file based on parameters and options, returning a FileDescriptor
* encapsulating the handle to the open file.
*/
private static FileDescriptor open(String pathForWindows,
String pathToCheck,
Flags flags,
long pSecurityDescriptor)
throws WindowsException
{
// set to true if file must be truncated after open
boolean truncateAfterOpen = false;
// map options
int dwDesiredAccess = 0;
if (flags.read)
dwDesiredAccess |= GENERIC_READ;
if (flags.write)
dwDesiredAccess |= GENERIC_WRITE;
int dwShareMode = 0;
if (flags.shareRead)
dwShareMode |= FILE_SHARE_READ;
if (flags.shareWrite)
dwShareMode |= FILE_SHARE_WRITE;
if (flags.shareDelete)
dwShareMode |= FILE_SHARE_DELETE;
int dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
int dwCreationDisposition = OPEN_EXISTING;
if (flags.write) {
if (flags.createNew) {
dwCreationDisposition = CREATE_NEW;
// force create to fail if file is orphaned reparse point
dwFlagsAndAttributes |= FILE_FLAG_OPEN_REPARSE_POINT;
} else {
if (flags.create)
dwCreationDisposition = OPEN_ALWAYS;
if (flags.truncateExisting) {
// Windows doesn't have a creation disposition that exactly
// corresponds to CREATE + TRUNCATE_EXISTING so we use
// the OPEN_ALWAYS mode and then truncate the file.
if (dwCreationDisposition == OPEN_ALWAYS) {
truncateAfterOpen = true;
} else {
dwCreationDisposition = TRUNCATE_EXISTING;
}
}
}
}
if (flags.dsync || flags.sync)
dwFlagsAndAttributes |= FILE_FLAG_WRITE_THROUGH;
if (flags.overlapped)
dwFlagsAndAttributes |= FILE_FLAG_OVERLAPPED;
if (flags.deleteOnClose)
dwFlagsAndAttributes |= FILE_FLAG_DELETE_ON_CLOSE;
// NOFOLLOW_LINKS and NOFOLLOW_REPARSEPOINT mean open reparse point
boolean okayToFollowLinks = true;
if (dwCreationDisposition != CREATE_NEW &&
(flags.noFollowLinks ||
flags.openReparsePoint ||
flags.deleteOnClose))
{
if (flags.noFollowLinks || flags.deleteOnClose)
okayToFollowLinks = false;
dwFlagsAndAttributes |= FILE_FLAG_OPEN_REPARSE_POINT;
}
// permission check
if (pathToCheck != null) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
if (flags.read)
sm.checkRead(pathToCheck);
if (flags.write)
sm.checkWrite(pathToCheck);
if (flags.deleteOnClose)
sm.checkDelete(pathToCheck);
}
}
// open file
long handle = CreateFile(pathForWindows,
dwDesiredAccess,
dwShareMode,
pSecurityDescriptor,
dwCreationDisposition,
dwFlagsAndAttributes);
// make sure this isn't a symbolic link.
if (!okayToFollowLinks) {
try {
if (WindowsFileAttributes.readAttributes(handle).isSymbolicLink())
throw new WindowsException("File is symbolic link");
} catch (WindowsException x) {
CloseHandle(handle);
throw x;
}
}
// truncate file (for CREATE + TRUNCATE_EXISTING case)
if (truncateAfterOpen) {
try {
SetEndOfFile(handle);
} catch (WindowsException x) {
CloseHandle(handle);
throw x;
}
}
// make the file sparse if needed
if (dwCreationDisposition == CREATE_NEW && flags.sparse) {
try {
DeviceIoControlSetSparse(handle);
} catch (WindowsException x) {
// ignore as sparse option is hint
}
}
// create FileDescriptor and return
FileDescriptor fdObj = new FileDescriptor();
fdAccess.setHandle(fdObj, handle);
return fdObj;
}
static long CreateFile(String path,
int dwDesiredAccess,
int dwShareMode,
long lpSecurityAttributes,
int dwCreationDisposition,
int dwFlagsAndAttributes)
private static native long CreateFile0(long lpFileName,
int dwDesiredAccess,
int dwShareMode,
long lpSecurityAttributes,
int dwCreationDisposition,
int dwFlagsAndAttributes)
throws WindowsException;
read
public int read(ByteBuffer dst) throws IOException {
ensureOpen();
if (!readable)
throw new NonReadableChannelException();
synchronized (positionLock) {
int n = 0;
int ti = -1;
try {
begin();
ti = threads.add();
if (!isOpen())
return 0;
do {
n = IOUtil.read(fd, dst, -1, nd);
} while ((n == IOStatus.INTERRUPTED) && isOpen());
return IOStatus.normalize(n);
} finally {
threads.remove(ti);
end(n > 0);
assert IOStatus.check(n);
}
}
}
IOUtil.read
static int read(FileDescriptor fd, ByteBuffer dst, long position,
NativeDispatcher nd) IOException {
if (dst.isReadOnly())
throw new IllegalArgumentException("Read-only buffer");
int n = readIntoNativeBuffer(fd, bb, position, nd);
bb.flip();
if (n > 0)
dst.put(bb);
return n;
} finally {
Util.offerFirstTemporaryDirectBuffer(bb);
} }
通过上述实现可以看出,基于channel的文件数据读取步骤如下:
1、申请一块和缓存同大小的DirectByteBuffer bb。
2、读取数据到缓存bb,底层由NativeDispatcher的read实现。
3、把bb的数据读取到dst(用户定义的缓存,在jvm中分配内存)。
read方法导致数据复制了两次。
write
public int write(ByteBuffer src) throws IOException {
ensureOpen();
if (!writable)
throw new NonWritableChannelException();
synchronized (positionLock) {
int n = 0;
int ti = -1;
try {
begin();
ti = threads.add();
if (!isOpen())
return 0;
do {
n = IOUtil.write(fd, src, -1, nd);
} while ((n == IOStatus.INTERRUPTED) && isOpen());
return IOStatus.normalize(n);
} finally {
threads.remove(ti);
end(n > 0);
assert IOStatus.check(n);
}
}
}
IOUtil.write
static int write(FileDescriptor fd, ByteBuffer src, long position,
// Substitute a native buffer int pos = src.position(); int lim = src.limit(); assert (pos <= lim); int rem = (pos <= lim ? lim - pos : 0); ByteBuffer bb = Util.getTemporaryDirectBuffer(rem); try {
bb.put(src);
bb.flip();
// Do not update src until we see how many bytes were written
src.position(pos);
int n = writeFromNativeBuffer(fd, bb, position, nd);
if (n > 0) {
// now update src
src.position(pos + n);
}
return n;
public final SelectionKey register(Selector sel, int ops,
Object att)
throws ClosedChannelException
{
synchronized (regLock) {
if (!isOpen())
throw new ClosedChannelException();
if ((ops & ~validOps()) != 0)
throw new IllegalArgumentException();
if (blocking)
throw new IllegalBlockingModeException();
public int select(long timeout)
throws IOException
{
if (timeout < 0)
throw new IllegalArgumentException("Negative timeout");
return lockAndDoSelect((timeout == 0) ? -1 : timeout);
}
selectNow(非阻塞版本)
public int selectNow() throws IOException {
return this.lockAndDoSelect(0L);
}
private int lockAndDoSelect(long timeout) throws IOException {
synchronized (this) {
if (!isOpen())
throw new ClosedSelectorException();
synchronized (publicKeys) {
synchronized (publicSelectedKeys) {
return doSelect(timeout);
}
}
}
}
WindowsSelectorImpl#doSelect
protected int doSelect(long timeout) throws IOException { if (channelArray == null)
throw new ClosedSelectorException();
this.timeout = timeout; // set selector timeout processDeregisterQueue(); if (interruptTriggered) {
resetWakeupSocket();
return 0;
} // Calculate number of helper threads needed for poll. If necessary // threads are created here and start waiting on startLock adjustThreadsCount(); finishLock.reset(); // reset finishLock // Wakeup helper threads, waiting on startLock, so they start polling. // Redundant threads will exit here after wakeup. startLock.startThreads(); // do polling in the main thread. Main thread is responsible for // first MAX_SELECTABLE_FDS entries in pollArray. try {
begin();
try {
subSelector.poll();
} catch (IOException e) {
finishLock.setException(e); // Save this exception
}
// Main thread is out of poll(). Wakeup others and wait for them
if (threads.size() > 0)
finishLock.waitForHelperThreads();
} finally {
end();
}
// Done with poll(). Set wakeupSocket to nonsignaled for the next run. finishLock.checkForException(); processDeregisterQueue(); int updated = updateSelectedKeys(); // Done with poll(). Set wakeupSocket to nonsignaled for the next run. resetWakeupSocket(); return updated; }
// IOException is thrown if the file handle cannot be associated
// with the completion port. All we can do is close the file.
long handle = fdAccess.getHandle(fdObj);
CloseHandle(handle);
throw x;
}
WindowsAsynchronousFileChannelImpl#open
public static AsynchronousFileChannel open(FileDescriptor fdo,
boolean reading,
boolean writing,
ThreadPool pool)
throws IOException
{
Iocp iocp;
boolean isDefaultIocp;
if (pool == null) {
iocp = DefaultIocpHolder.defaultIocp;
isDefaultIocp = true;
} else {
iocp = new Iocp(null, pool).start();
isDefaultIocp = false;
}
try {
return new
WindowsAsynchronousFileChannelImpl(fdo, reading, writing, iocp, isDefaultIocp);
} catch (IOException x) {
// error binding to port so need to close it (if created for this channel)
if (!isDefaultIocp)
iocp.implClose();
throw x;
}
}
Throwable t = e.getCause();
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new InternalError(t.toString(), t);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString(), e);
} }
1)getProxyClass0(生成代理类的class)
最终生成是通过ProxyGenerator的generateProxyClass方法实现的。
private static Class<?> getProxyClass0(ClassLoader loader,
Class<?>... interfaces) {
if (interfaces.length > 65535) {
throw new IllegalArgumentException("interface limit exceeded");
}
// If the proxy class defined by the given loader implementing
// the given interfaces exists, this will simply return the cached copy;
// otherwise, it will create the proxy class via the ProxyClassFactory
return proxyClassCache.get(loader, interfaces);
}
private static final WeakCache<ClassLoader, Class<?>[], Class<?>>
proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());
@param type of keys
@param
type of parameters
@param type of values
/ final class WeakCache<K, P, V> {}
public V get(K key, P parameter) {
Objects.requireNonNull(parameter);
expungeStaleEntries();
Object cacheKey = CacheKey.valueOf(key, refQueue);
// lazily install the 2nd level valuesMap for the particular cacheKey
ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
if (valuesMap == null) {
ConcurrentMap<Object, Supplier<V>> oldValuesMap
= map.putIfAbsent(cacheKey,
valuesMap = new ConcurrentHashMap<>());
if (oldValuesMap != null) {
valuesMap = oldValuesMap;
}
}
// create subKey and retrieve the possible Supplier<V> stored by that
// subKey from valuesMap
Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
Supplier<V> supplier = valuesMap.get(subKey);
Factory factory = null;
while (true) {
if (supplier != null) {
// supplier might be a Factory or a CacheValue<V> instance
// supplier是Factory,这个类定义在WeakCache的内部。
V value = supplier.get();
if (value != null) {
return value;
}
}
// else no supplier in cache
// or a supplier that returned null (could be a cleared CacheValue
// or a Factory that wasn't successful in installing the CacheValue)
// lazily construct a Factory
if (factory == null) {
factory = new Factory(key, parameter, subKey, valuesMap);
}
if (supplier == null) {
supplier = valuesMap.putIfAbsent(subKey, factory);
if (supplier == null) {
// successfully installed Factory
supplier = factory;
}
// else retry with winning supplier
} else {
if (valuesMap.replace(subKey, supplier, factory)) {
// successfully replaced
// cleared CacheEntry / unsuccessful Factory
// with our Factory
supplier = factory;
} else {
// retry with current supplier
supplier = valuesMap.get(subKey);
}
}
} }
Factory
private final class Factory implements Supplier<V> {
private final K key;
private final P parameter;
private final Object subKey;
private final ConcurrentMap<Object, Supplier<V>> valuesMap;
Factory(K key, P parameter, Object subKey,
ConcurrentMap<Object, Supplier<V>> valuesMap) {
this.key = key;
this.parameter = parameter;
this.subKey = subKey;
this.valuesMap = valuesMap;
}
@Override
public synchronized V get() { // serialize access
// re-check
Supplier<V> supplier = valuesMap.get(subKey);
if (supplier != this) {
// something changed while we were waiting:
// might be that we were replaced by a CacheValue
// or were removed because of failure ->
// return null to signal WeakCache.get() to retry
// the loop
return null;
}
// else still us (supplier == this)
// create new value
// 创建新的class
V value = null;
try {
value = Objects.requireNonNull(valueFactory.apply(key, parameter));
} finally {
if (value == null) { // remove us on failure
valuesMap.remove(subKey, this);
}
}
// the only path to reach here is with non-null value
assert value != null;
// wrap value with CacheValue (WeakReference)
CacheValue<V> cacheValue = new CacheValue<>(value);
// try replacing us with CacheValue (this should always succeed)
if (valuesMap.replace(subKey, this, cacheValue)) {
// put also in reverseMap
reverseMap.put(cacheValue, Boolean.TRUE);
} else {
throw new AssertionError("Should not reach here");
}
// successfully replaced us with new CacheValue -> return the value
// wrapped by it
return value;
} }
private static final class ProxyClassFactory
implements BiFunction<ClassLoader, Class<?>[], Class<?>>
{
// prefix for all proxy class names
private static final String proxyClassNamePrefix = "$Proxy";
// next number to use for generation of unique proxy class names
private static final AtomicLong nextUniqueNumber = new AtomicLong();
@Override
public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {
Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
for (Class<?> intf : interfaces) {
/*
* Verify that the class loader resolves the name of this
* interface to the same Class object.
*/
Class<?> interfaceClass = null;
try {
interfaceClass = Class.forName(intf.getName(), false, loader);
} catch (ClassNotFoundException e) {
}
if (interfaceClass != intf) {
throw new IllegalArgumentException(
intf + " is not visible from class loader");
}
/*
* Verify that the Class object actually represents an
* interface.
*/
if (!interfaceClass.isInterface()) {
throw new IllegalArgumentException(
interfaceClass.getName() + " is not an interface");
}
/*
* Verify that this interface is not a duplicate.
*/
if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
}
String proxyPkg = null; // package to define proxy class in
int accessFlags = Modifier.PUBLIC | Modifier.FINAL;
/*
* Record the package of a non-public proxy interface so that the
* proxy class will be defined in the same package. Verify that
* all non-public proxy interfaces are in the same package.
*/
for (Class<?> intf : interfaces) {
int flags = intf.getModifiers();
if (!Modifier.isPublic(flags)) {
accessFlags = Modifier.FINAL;
String name = intf.getName();
int n = name.lastIndexOf('.');
String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
if (proxyPkg == null) {
proxyPkg = pkg;
} else if (!pkg.equals(proxyPkg)) {
throw new IllegalArgumentException(
"non-public interfaces from different packages");
}
}
}
if (proxyPkg == null) {
// if no non-public proxy interfaces, use com.sun.proxy package
proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
}
/*
* Choose a name for the proxy class to generate.
*/
long num = nextUniqueNumber.getAndIncrement();
String proxyName = proxyPkg + proxyClassNamePrefix + num;
/*
* Generate the specified proxy class.
*/
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
proxyName, interfaces, accessFlags);
try {
return defineClass0(loader, proxyName,
proxyClassFile, 0, proxyClassFile.length);
} catch (ClassFormatError e) {
/*
* A ClassFormatError here means that (barring bugs in the
* proxy class generation code) there was some other
* invalid aspect of the arguments supplied to the proxy
* class creation (such as virtual machine limitations
* exceeded).
*/
throw new IllegalArgumentException(e.toString());
}
}
}
重点!
/**
* Generate a proxy class given a name and a list of proxy interfaces.
*
* @param name the class name of the proxy class
* @param interfaces proxy interfaces
* @param accessFlags access flags of the proxy class
*/
public static byte[] generateProxyClass(final String name,
Class<?>[] interfaces,
int accessFlags)
{
ProxyGenerator gen = new ProxyGenerator(name, interfaces, accessFlags);
final byte[] classFile = gen.generateClassFile();
if (saveGeneratedFiles) {
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<Void>() {
public Void run() {
try {
int i = name.lastIndexOf('.');
Path path;
if (i > 0) {
Path dir = Paths.get(name.substring(0, i).replace('.', File.separatorChar));
Files.createDirectories(dir);
path = dir.resolve(name.substring(i+1, name.length()) + ".class");
} else {
path = Paths.get(name + ".class");
}
Files.write(path, classFile);
return null;
} catch (IOException e) {
throw new InternalError(
"I/O exception saving generated file: " + e);
}
}
});
}
return classFile;
}
ProxyGenerator#generateClassFIle
/**
* Generate a class file for the proxy class. This method drives the
* class file generation process.
*/
private byte[] generateClassFile() {
/* ============================================================
* Step 1: Assemble ProxyMethod objects for all methods to
* generate proxy dispatching code for.
*/
/*
* Record that proxy methods are needed for the hashCode, equals,
* and toString methods of java.lang.Object. This is done before
* the methods from the proxy interfaces so that the methods from
* java.lang.Object take precedence over duplicate methods in the
* proxy interfaces.
*/
addProxyMethod(hashCodeMethod, Object.class);
addProxyMethod(equalsMethod, Object.class);
addProxyMethod(toStringMethod, Object.class);
/*
* Now record all of the methods from the proxy interfaces, giving
* earlier interfaces precedence over later ones with duplicate
* methods.
*/
for (Class<?> intf : interfaces) {
for (Method m : intf.getMethods()) {
addProxyMethod(m, intf);
}
}
/*
* For each set of proxy methods with the same signature,
* verify that the methods' return types are compatible.
*/
for (List<ProxyMethod> sigmethods : proxyMethods.values()) {
checkReturnTypes(sigmethods);
}
/* ============================================================
* Step 2: Assemble FieldInfo and MethodInfo structs for all of
* fields and methods in the class we are generating.
*/
try {
methods.add(generateConstructor());
for (List<ProxyMethod> sigmethods : proxyMethods.values()) {
for (ProxyMethod pm : sigmethods) {
// add static field for method's Method object
fields.add(new FieldInfo(pm.methodFieldName,
"Ljava/lang/reflect/Method;",
ACC_PRIVATE | ACC_STATIC));
// generate code for proxy method and add it
methods.add(pm.generateMethod());
}
}
methods.add(generateStaticInitializer());
} catch (IOException e) {
throw new InternalError("unexpected I/O Exception", e);
}
if (methods.size() > 65535) {
throw new IllegalArgumentException("method limit exceeded");
}
if (fields.size() > 65535) {
throw new IllegalArgumentException("field limit exceeded");
}
/* ============================================================
* Step 3: Write the final class file.
*/
/*
* Make sure that constant pool indexes are reserved for the
* following items before starting to write the final class file.
*/
cp.getClass(dotToSlash(className));
cp.getClass(superclassName);
for (Class<?> intf: interfaces) {
cp.getClass(dotToSlash(intf.getName()));
}
/*
* Disallow new constant pool additions beyond this point, since
* we are about to write the final constant pool table.
*/
cp.setReadOnly();
ByteArrayOutputStream bout = new ByteArrayOutputStream();
DataOutputStream dout = new DataOutputStream(bout);
try {
/*
* Write all the items of the "ClassFile" structure.
* See JVMS section 4.1.
*/
// u4 magic;
dout.writeInt(0xCAFEBABE);
// u2 minor_version;
dout.writeShort(CLASSFILE_MINOR_VERSION);
// u2 major_version;
dout.writeShort(CLASSFILE_MAJOR_VERSION);
cp.write(dout); // (write constant pool)
// u2 access_flags;
dout.writeShort(accessFlags);
// u2 this_class;
dout.writeShort(cp.getClass(dotToSlash(className)));
// u2 super_class;
dout.writeShort(cp.getClass(superclassName));
// u2 interfaces_count;
dout.writeShort(interfaces.length);
// u2 interfaces[interfaces_count];
for (Class<?> intf : interfaces) {
dout.writeShort(cp.getClass(
dotToSlash(intf.getName())));
}
// u2 fields_count;
dout.writeShort(fields.size());
// field_info fields[fields_count];
for (FieldInfo f : fields) {
f.write(dout);
}
// u2 methods_count;
dout.writeShort(methods.size());
// method_info methods[methods_count];
for (MethodInfo m : methods) {
m.write(dout);
}
// u2 attributes_count;
dout.writeShort(0); // (no ClassFile attributes for proxy classes)
} catch (IOException e) {
throw new InternalError("unexpected I/O Exception", e);
}
return bout.toByteArray();
}
if (TraceClassResolution && result != NULL) { // this function is generally only used for class loading during verification. ResourceMark rm; oop from_mirror = JNIHandles::resolve_non_null(from); Klass from_class = java_lang_Class::as_Klass(from_mirror); const char from_name = from_class->external_name();
oop mirror = JNIHandles::resolve_non_null(result); Klass to_class = java_lang_Class::as_Klass(mirror); const char to = to_class->external_name(); tty->print(“RESOLVE %s %s (verification)\n”, from_name, to); }
private Field[] privateGetDeclaredFields(boolean publicOnly) {
checkInitted();
Field[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
if (res != null) return res;
}
// No cached value available; request value from VM
res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
if (rd != null) {
if (publicOnly) {
rd.declaredPublicFields = res;
} else {
rd.declaredFields = res;
}
}
return res;
}
private static Field[] copyFields(Field[] arg) {
Field[] out = new Field[arg.length];
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < arg.length; i++) {
out[i] = fact.copyField(arg[i]);
}
return out;
}
Method.invoke的实现
以下为无同步、无异常的情况下调用的步骤
1)创建Frame
2)如果对象flag为native,交给native_handler进行处理
3)在frame中执行java代码
4)弹出Frame
5)返回执行结果的指针
主要慢在如下方面:
需要完全执行ByteCode而缺少JIT等优化
检查参数非常多,这些本来可以在编译器或者加载时完成
public Object invoke(Object obj, Object... args)
throws IllegalAccessException, IllegalArgumentException,
InvocationTargetException
{
if (!override) {
if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
checkAccess(caller, clazz, obj, modifiers);
}
}
MethodAccessor ma = methodAccessor; // read volatile
if (ma == null) {
ma = acquireMethodAccessor();
}
return ma.invoke(obj, args);
}
NativeMethodAccessorImpl#invoke
public Object invoke(Object obj, Object[] args)
throws IllegalArgumentException, InvocationTargetException
{
// We can't inflate methods belonging to vm-anonymous classes because
// that kind of class can't be referred to by name, hence can't be
// found from the generated bytecode.
if (++numInvocations > ReflectionFactory.inflationThreshold()
&& !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {
MethodAccessorImpl acc = (MethodAccessorImpl)
new MethodAccessorGenerator().
generateMethod(method.getDeclaringClass(),
method.getName(),
method.getParameterTypes(),
method.getReturnType(),
method.getExceptionTypes(),
method.getModifiers());
parent.setDelegate(acc);
}
return invoke0(method, obj, args);
}
private static native Object invoke0(Method m, Object obj, Object[] args);
Java_sun_reflect_NativeMethodAccessorImpl_invoke0 (JNIEnv *env, jclass unused, jobject m, jobject obj, jobjectArray args) { return JVM_InvokeMethod(env, m, obj, args); }
oop ret_type = java_lang_reflect_Method::return_type(method_handle());
assert(ret_type != NULL, "sanity check: ret_type oop must not be NULL!");
if (java_lang_Class::is_primitive(ret_type)) {
// Only for primitive type vm allocates memory for java object.
// See box() method.
JvmtiExport::post_vm_object_alloc(JavaThread::current(), result);
}
public T newInstance()
throws InstantiationException, IllegalAccessException
{
if (System.getSecurityManager() != null) {
checkMemberAccess(Member.PUBLIC, Reflection.getCallerClass(), false);
}
// NOTE: the following code may not be strictly correct under
// the current Java memory model.
// Constructor lookup
if (cachedConstructor == null) {
if (this == Class.class) {
throw new IllegalAccessException(
"Can not call newInstance() on the Class for java.lang.Class"
);
}
try {
Class<?>[] empty = {};
final Constructor<T> c = getConstructor0(empty, Member.DECLARED);
// Disable accessibility checks on the constructor
// since we have to do the security check here anyway
// (the stack depth is wrong for the Constructor's
// security check to work)
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<Void>() {
public Void run() {
c.setAccessible(true);
return null;
}
});
cachedConstructor = c;
} catch (NoSuchMethodException e) {
throw (InstantiationException)
new InstantiationException(getName()).initCause(e);
}
}
Constructor<T> tmpConstructor = cachedConstructor;
// Security check (same as in java.lang.reflect.Constructor)
int modifiers = tmpConstructor.getModifiers();
if (!Reflection.quickCheckMemberAccess(this, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
if (newInstanceCallerCache != caller) {
Reflection.ensureMemberAccess(caller, this, null, modifiers);
newInstanceCallerCache = caller;
}
}
// Run constructor
try {
return tmpConstructor.newInstance((Object[])null);
} catch (InvocationTargetException e) {
Unsafe.getUnsafe().throwException(e.getTargetException());
// Not reached
return null;
}
}